A Modular Description of the Geometry in Monte Carlo Modeling Studies for Nuclear Medicine

نویسنده

  • D. BOLLINI
چکیده

EGS is a very popular Monte Carlo code, used in the simulation of Nuclear Medicine devices. Simulation techniques are particularly effective to optimize collimator configuration and camera design in Single Photon Emission studies. With the EGS code, users must define the geometry where particles are transported. This can be both a very hard task and a source of inefficiency, especially in the case of complex geometries as, for instance, hexagonal hole collimators or pixellated detectors. In this paper we present a modular description of such geometries. Our method allows the computation of the region a point belongs to in a few steps; thus we are able to calculate this region in a reduced number of operations, independently of the collimator and detector dimensions. With a modular description we can reduce the computational time by 30%, with respect to a “traditional” description of the geometry. We validated the modular description in the simulation of a Nuclear Medicine apparatus for scintimammography. Two different collimators have been considered: one with square holes and one with hexagonal holes. We accomplished their characterization and tested their performance in a torso–breast phantom. Outcomes of the two collimators are comparable, even if it seems that the hexagonal hole collimator, thanks to its greater septal penetration, could give slightly better results for small tumors located near the collimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and performance evaluation of spheroid geometry for brain PET scanner using Monte Carlo modeling

Introduction: There has been a curiosity about the spheroid geometry for PET scanners developments since several years ago, therefore in this study, we are aiming to evaluate the performance of this geometry and compare its performance with cylindrical geometry using Monte Carlo simulation. Methods: We simulated a spheroid geometry with a radius of 199 mm...

متن کامل

Monte Carlo characterization of photoneutrons in the radiation therapy with high energy photons: a Comparison between simplified and full Monte Carlo models

Background: The characteristics of secondary neutrons in a high energy radiation therapy room were studied using the MCNPX Monte Carlo (MC) code. Materials and Methods: Two MC models including a model with full description of head components and a simplified model used in previous studies were implemented for MC simulations. Results: Results showed 4-53% difference between full and wit...

متن کامل

Image Optimization in Single Photon Emission Computed Tomography by Hardware Modifications with Monte Carlo Simulation

Introduction: In Single Photon Emission Computed Tomography (SPECT), the projection data used for image reconstruction are distorted by several factors, including attenuation and scattering of gamma rays, collimator structure, data acquisition method, organ motion, and washout of radiopharmaceuticals. All these make reconstruction of a quantitative SPECT image very difficult. Simulation of a SP...

متن کامل

A modular description for collimator geometry in EGS simulation tasks - Nuclear Science Symposium Conference Record, 2001 IEEE

EGS is a very common Monte Carlo code, used in the simulation of Nuclear Medicine devices. Simulation techniques are particularly useful, in order to optimize collimator configuration and camera design in Single Photon Emission studies. Using the EGS code, users must define the geometry where particles are transported. This can be both a very hard task and a source of inefficiency, especially i...

متن کامل

Derivation and validation of a sensitivity formula for knife-edge slit gamma camera: A theoretical and Monte Carlo simulation study

Introduction: Gamma cameras are proposed for online range verification and treatment monitoring in proton therapy.  An Analytical formula was derived and validated for sensitivity of a slit collimator based on the photon fluence concept. Methods: Fluence formulation was generalized for photons distribution function and solved for high-energy point sources. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002